57 research outputs found

    Borrelia recurrentis employs a novel multifunctional surface protein with anti-complement, anti-opsonic and invasive potential to escape innate immunity

    Get PDF
    Borrelia recurrentis, the etiologic agent of louse-borne relapsing fever in humans, has evolved strategies, including antigenic variation, to evade immune defence, thereby causing severe diseases with high mortality rates. Here we identify for the first time a multifunctional surface lipoprotein of B. recurrentis, termed HcpA, and demonstrate that it binds human complement regulators, Factor H, CFHR-1, and simultaneously, the host protease plasminogen. Cell surface bound factor H was found to retain its activity and to confer resistance to complement attack. Moreover, ectopic expression of HcpA in a B. burgdorferi B313 strain, deficient in Factor H binding proteins, protected the transformed spirochetes from complement-mediated killing. Furthermore, HcpA-bound plasminogen/plasmin endows B. recurrentis with the potential to resist opsonization and to degrade extracellular matrix components. Together, the present study underscores the high virulence potential of B. recurrentis. The elucidation of the molecular basis underlying the versatile strategies of B. recurrentis to escape innate immunity and to persist in human tissues, including the brain, may help to understand the pathological processes underlying louse-borne relapsing fever

    Evidence That Two ATP-Dependent (Lon) Proteases in Borrelia burgdorferi Serve Different Functions

    Get PDF
    The canonical ATP-dependent protease Lon participates in an assortment of biological processes in bacteria, including the catalysis of damaged or senescent proteins and short-lived regulatory proteins. Borrelia spirochetes are unusual in that they code for two putative ATP-dependent Lon homologs, Lon-1 and Lon-2. Borrelia burgdorferi, the etiologic agent of Lyme disease, is transmitted through the blood feeding of Ixodes ticks. Previous work in our laboratory reported that B. burgdorferi lon-1 is upregulated transcriptionally by exposure to blood in vitro, while lon-2 is not. Because blood induction of Lon-1 may be of importance in the regulation of virulence factors critical for spirochete transmission, the clarification of functional roles for these two proteases in B. burgdorferi was the object of this study. On the chromosome, lon-2 is immediately downstream of ATP-dependent proteases clpP and clpX, an arrangement identical to that of lon of Escherichia coli. Phylogenetic analysis revealed that Lon-1 and Lon-2 cluster separately due to differences in the NH2-terminal substrate binding domains that may reflect differences in substrate specificity. Recombinant Lon-1 manifested properties of an ATP-dependent chaperone-protease in vitro but did not complement an E. coli Lon mutant, while Lon-2 corrected two characteristic Lon-mutant phenotypes. We conclude that B. burgdorferi Lons -1 and -2 have distinct functional roles. Lon-2 functions in a manner consistent with canonical Lon, engaged in cellular homeostasis. Lon-1, by virtue of its blood induction, and as a unique feature of the Borreliae, may be important in host adaptation from the arthropod to a warm-blooded host

    A systematic review of taxane-containing regimens for metastatic breast cancer

    Get PDF
    We compared the results of randomised trials comparing taxane-containing chemotherapy regimens with regimens not containing a taxane in women with metastatic breast cancer. The specialised register of the Cochrane Breast Cancer Group was searched in March 2004. Eligibility was assessed and data extracted from eligible studies by two reviewers. Hazard ratios (HR) were derived for time-to-event outcomes, and a fixed-effect model was used for meta-analysis. Tumour response rates were analysed as dichotomous variables. Of 21 eligible trials, 16 had published some results and 12 data on overall survival. An estimated 2621 deaths among 3643 women suggest a significant difference in overall survival in favour of taxane-containing regimens (HR 0.93, 95% confidence interval (CI) 0.86–1.00, P=0.05). The treatment effect on survival was similar if only trials of first-line chemotherapy were included, although not statistically significant. There appeared to be an advantage for taxanes in time to progression (HR 0.92, 95% CI 0.85–0.99, P=0.02) and overall response (odds ratio (OR) 1.34, 95% CI 1.18–1.52, P<0.001). There was significant heterogeneity across the trials (P<0.001), partly because of the varying efficacy of the comparator regimens. Taxane-containing regimens improved overall survival in women with metastatic breast cancer. Taxane-containing regimens are more effective than some, but not all, nontaxane-containing regimens

    Activation of Human Monocytes by Live Borrelia burgdorferi Generates TLR2-Dependent and -Independent Responses Which Include Induction of IFN-Ξ²

    Get PDF
    It is widely believed that innate immune responses to Borrelia burgdorferi (Bb) are primarily triggered by the spirochete's outer membrane lipoproteins signaling through cell surface TLR1/2. We recently challenged this notion by demonstrating that phagocytosis of live Bb by peripheral blood mononuclear cells (PBMCs) elicited greater production of proinflammatory cytokines than did equivalent bacterial lysates. Using whole genome microarrays, we show herein that, compared to lysates, live spirochetes elicited a more intense and much broader transcriptional response involving genes associated with diverse cellular processes; among these were IFN-Ξ² and a number of interferon-stimulated genes (ISGs), which are not known to result from TLR2 signaling. Using isolated monocytes, we demonstrated that cell activation signals elicited by live Bb result from cell surface interactions and uptake and degradation of organisms within phagosomes. As with PBCMs, live Bb induced markedly greater transcription and secretion of TNF-Ξ±, IL-6, IL-10 and IL-1Ξ² in monocytes than did lysates. Secreted IL-18, which, like IL-1Ξ², also requires cleavage by activated caspase-1, was generated only in response to live Bb. Pro-inflammatory cytokine production by TLR2-deficient murine macrophages was only moderately diminished in response to live Bb but was drastically impaired against lysates; TLR2 deficiency had no significant effect on uptake and degradation of spirochetes. As with PBMCs, live Bb was a much more potent inducer of IFN-Ξ² and ISGs in isolated monocytes than were lysates or a synthetic TLR2 agonist. Collectively, our results indicate that the enhanced innate immune responses of monocytes following phagocytosis of live Bb have both TLR2-dependent and -independent components and that the latter induce transcription of type I IFNs and ISGs

    Off-Target Effects of Psychoactive Drugs Revealed by Genome-Wide Assays in Yeast

    Get PDF
    To better understand off-target effects of widely prescribed psychoactive drugs, we performed a comprehensive series of chemogenomic screens using the budding yeast Saccharomyces cerevisiae as a model system. Because the known human targets of these drugs do not exist in yeast, we could employ the yeast gene deletion collections and parallel fitness profiling to explore potential off-target effects in a genome-wide manner. Among 214 tested, documented psychoactive drugs, we identified 81 compounds that inhibited wild-type yeast growth and were thus selected for genome-wide fitness profiling. Many of these drugs had a propensity to affect multiple cellular functions. The sensitivity profiles of half of the analyzed drugs were enriched for core cellular processes such as secretion, protein folding, RNA processing, and chromatin structure. Interestingly, fluoxetine (Prozac) interfered with establishment of cell polarity, cyproheptadine (Periactin) targeted essential genes with chromatin-remodeling roles, while paroxetine (Paxil) interfered with essential RNA metabolism genes, suggesting potential secondary drug targets. We also found that the more recently developed atypical antipsychotic clozapine (Clozaril) had no fewer off-target effects in yeast than the typical antipsychotics haloperidol (Haldol) and pimozide (Orap). Our results suggest that model organism pharmacogenetic studies provide a rational foundation for understanding the off-target effects of clinically important psychoactive agents and suggest a rational means both for devising compound derivatives with fewer side effects and for tailoring drug treatment to individual patient genotypes

    The Role of Toll-Like Receptor 2 in Inflammation and Fibrosis during Progressive Renal Injury

    Get PDF
    Tissue fibrosis and chronic inflammation are common causes of progressive organ damage, including progressive renal disease, leading to loss of physiological functions. Recently, it was shown that Toll-like receptor 2 (TLR2) is expressed in the kidney and activated by endogenous danger signals. The expression and function of TLR2 during renal fibrosis and chronic inflammation has however not yet been elucidated. Therefore, we studied TLR2 expression in human and murine progressive renal diseases and explored its role by inducing obstructive nephropathy in TLR2βˆ’/βˆ’ or TLR2+/+ mice. We found that TLR2 is markedly upregulated on tubular and tubulointerstitial cells in patients with chronic renal injury. In mice with obstructive nephropathy, renal injury was associated with a marked upregulation and change in distribution of TLR2 and upregulation of murine TLR2 danger ligands Gp96, biglycan, and HMGB1. Notably, TLR2 enhanced inflammation as reflected by a significantly reduced influx of neutrophils and production of chemokines and TGF-Ξ² in kidneys of TLR2βˆ’/βˆ’ mice compared with TLR2+/+ animals. Although, the obstructed kidneys of TLR2βˆ’/βˆ’ mice had less interstitial myofibroblasts in the later phase of obstructive nephropathy, tubular injury and renal matrix accumulation was similar in both mouse strains. Together, these data demonstrate that TLR2 can initiate renal inflammation during progressive renal injury and that the absence of TLR2 does not affect the development of chronic renal injury and fibrosis

    Association of cetuximab with adverse pulmonary events in cancer patients: a comprehensive review

    Get PDF
    Compounds derived from biologic sources, or biologicals, are increasingly utilized as therapeutic agents in malignancy. Development of anti-cancer targeted therapies from biologics is increasingly being utilized. Cetuximab, a chimeric monoclonal antibody, is one such anti-cancer targeted therapeutic that has shown efficacy in quelling the rate of patient decline in colorectal, head/neck, and non-small cell lung cancer. However, due to the relatively recent addition of biologic compounds to the therapeutic arsenal, information related to adverse reactions is less well known than those seen in traditional chemotherapeutics. Dermatologic reactions have been demonstrated as the most frequent side effect cited during cetuximab therapy for malignancy; however, other effects may lead to greater morbidity. In general, pulmonary complications of therapeutics can lead to significant morbidity and mortality. The purpose of this review is to compile the various pulmonary side effects seen in patients treated with cetuximab for various malignancies, and to compare the incidence of these adverse reactions to standard therapies

    Current treatment options for recurrent nasopharyngeal cancer

    Get PDF
    Loco-regional control rate of nasopharyngeal carcinoma (NPC) has improved significantly in the past decade. However, local recurrence still represents a major cause of mortality and morbidity in advanced stages, and management of local failure remains a challenging issue in NPC. The best salvage treatment for local recurrent NPC remains to be determined. The options include brachytherapy, external radiotherapy, stereotactic radiosurgery, and nasopharyngectomy, either alone or in different combinations. In this article we will discuss the different options for salvage of locally recurrent NPC. Retreatment of locally recurrent NPC using radiotherapy, alone or in combination with other treatment modalities, as well as surgery, can result in long-term local control and survival in a substantial proportion of patients. For small-volume recurrent tumors (T1–T2) treated with external radiotherapy, brachytherapy or stereotactic radiosurgery, comparable results to those obtained with surgery have been reported. In contrast, treatment results of advanced-stage locally recurrent NPC are generally more satisfactory with surgery (with or without postoperative radiotherapy) than with reirradiation

    The Urokinase Receptor (uPAR) Facilitates Clearance of Borrelia burgdorferi

    Get PDF
    The causative agent of Lyme borreliosis, the spirochete Borrelia burgdorferi, has been shown to induce expression of the urokinase receptor (uPAR); however, the role of uPAR in the immune response against Borrelia has never been investigated. uPAR not only acts as a proteinase receptor, but can also, dependently or independently of ligation to uPA, directly affect leukocyte function. We here demonstrate that uPAR is upregulated on murine and human leukocytes upon exposure to B. burgdorferi both in vitro as well as in vivo. Notably, B. burgdorferi-inoculated C57BL/6 uPAR knock-out mice harbored significantly higher Borrelia numbers compared to WT controls. This was associated with impaired phagocytotic capacity of B. burgdorferi by uPAR knock-out leukocytes in vitro. B. burgdorferi numbers in vivo, and phagocytotic capacity in vitro, were unaltered in uPA, tPA (low fibrinolytic activity) and PAI-1 (high fibrinolytic activity) knock-out mice compared to WT controls. Strikingly, in uPAR knock-out mice partially backcrossed to a B. burgdorferi susceptible C3H/HeN background, higher B. burgdorferi numbers were associated with more severe carditis and increased local TLR2 and IL-1Ξ² mRNA expression. In conclusion, in B. burgdorferi infection, uPAR is required for phagocytosis and adequate eradication of the spirochete from the heart by a mechanism that is independent of binding of uPAR to uPA or its role in the fibrinolytic system

    Multiple Means to the Same End: The Genetic Basis of Acquired Stress Resistance in Yeast

    Get PDF
    In nature, stressful environments often occur in combination or close succession, and thus the ability to prepare for impending stress likely provides a significant fitness advantage. Organisms exposed to a mild dose of stress can become tolerant to what would otherwise be a lethal dose of subsequent stress; however, the mechanism of this acquired stress tolerance is poorly understood. To explore this, we exposed the yeast gene-deletion libraries, which interrogate all essential and non-essential genes, to successive stress treatments and identified genes necessary for acquiring subsequent stress resistance. Cells were exposed to one of three different mild stress pretreatments (salt, DTT, or heat shock) and then challenged with a severe dose of hydrogen peroxide (H2O2). Surprisingly, there was little overlap in the genes required for acquisition of H2O2 tolerance after different mild-stress pretreatments, revealing distinct mechanisms of surviving H2O2 in each case. Integrative network analysis of these results with respect to protein–protein interactions, synthetic–genetic interactions, and functional annotations identified many processes not previously linked to H2O2 tolerance. We tested and present several models that explain the lack of overlap in genes required for H2O2 tolerance after each of the three pretreatments. Together, this work shows that acquired tolerance to the same severe stress occurs by different mechanisms depending on prior cellular experiences, underscoring the context-dependent nature of stress tolerance
    • …
    corecore